Copied to
clipboard

?

G = C23×C24order 192 = 26·3

Abelian group of type [2,2,2,24]

direct product, abelian, monomial, 2-elementary

Aliases: C23×C24, SmallGroup(192,1454)

Series: Derived Chief Lower central Upper central

C1 — C23×C24
C1C2C4C12C24C2×C24C22×C24 — C23×C24
C1 — C23×C24
C1 — C23×C24

Subgroups: 338, all normal (12 characteristic)
C1, C2, C2 [×14], C3, C4, C4 [×7], C22 [×35], C6, C6 [×14], C8 [×8], C2×C4 [×28], C23 [×15], C12, C12 [×7], C2×C6 [×35], C2×C8 [×28], C22×C4 [×14], C24, C24 [×8], C2×C12 [×28], C22×C6 [×15], C22×C8 [×14], C23×C4, C2×C24 [×28], C22×C12 [×14], C23×C6, C23×C8, C22×C24 [×14], C23×C12, C23×C24

Quotients:
C1, C2 [×15], C3, C4 [×8], C22 [×35], C6 [×15], C8 [×8], C2×C4 [×28], C23 [×15], C12 [×8], C2×C6 [×35], C2×C8 [×28], C22×C4 [×14], C24, C24 [×8], C2×C12 [×28], C22×C6 [×15], C22×C8 [×14], C23×C4, C2×C24 [×28], C22×C12 [×14], C23×C6, C23×C8, C22×C24 [×14], C23×C12, C23×C24

Generators and relations
 G = < a,b,c,d | a2=b2=c2=d24=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, cd=dc >

Smallest permutation representation
Regular action on 192 points
Generators in S192
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 25)(20 26)(21 27)(22 28)(23 29)(24 30)(49 181)(50 182)(51 183)(52 184)(53 185)(54 186)(55 187)(56 188)(57 189)(58 190)(59 191)(60 192)(61 169)(62 170)(63 171)(64 172)(65 173)(66 174)(67 175)(68 176)(69 177)(70 178)(71 179)(72 180)(73 123)(74 124)(75 125)(76 126)(77 127)(78 128)(79 129)(80 130)(81 131)(82 132)(83 133)(84 134)(85 135)(86 136)(87 137)(88 138)(89 139)(90 140)(91 141)(92 142)(93 143)(94 144)(95 121)(96 122)(97 164)(98 165)(99 166)(100 167)(101 168)(102 145)(103 146)(104 147)(105 148)(106 149)(107 150)(108 151)(109 152)(110 153)(111 154)(112 155)(113 156)(114 157)(115 158)(116 159)(117 160)(118 161)(119 162)(120 163)
(1 141)(2 142)(3 143)(4 144)(5 121)(6 122)(7 123)(8 124)(9 125)(10 126)(11 127)(12 128)(13 129)(14 130)(15 131)(16 132)(17 133)(18 134)(19 135)(20 136)(21 137)(22 138)(23 139)(24 140)(25 85)(26 86)(27 87)(28 88)(29 89)(30 90)(31 91)(32 92)(33 93)(34 94)(35 95)(36 96)(37 73)(38 74)(39 75)(40 76)(41 77)(42 78)(43 79)(44 80)(45 81)(46 82)(47 83)(48 84)(49 168)(50 145)(51 146)(52 147)(53 148)(54 149)(55 150)(56 151)(57 152)(58 153)(59 154)(60 155)(61 156)(62 157)(63 158)(64 159)(65 160)(66 161)(67 162)(68 163)(69 164)(70 165)(71 166)(72 167)(97 177)(98 178)(99 179)(100 180)(101 181)(102 182)(103 183)(104 184)(105 185)(106 186)(107 187)(108 188)(109 189)(110 190)(111 191)(112 192)(113 169)(114 170)(115 171)(116 172)(117 173)(118 174)(119 175)(120 176)
(1 149)(2 150)(3 151)(4 152)(5 153)(6 154)(7 155)(8 156)(9 157)(10 158)(11 159)(12 160)(13 161)(14 162)(15 163)(16 164)(17 165)(18 166)(19 167)(20 168)(21 145)(22 146)(23 147)(24 148)(25 100)(26 101)(27 102)(28 103)(29 104)(30 105)(31 106)(32 107)(33 108)(34 109)(35 110)(36 111)(37 112)(38 113)(39 114)(40 115)(41 116)(42 117)(43 118)(44 119)(45 120)(46 97)(47 98)(48 99)(49 136)(50 137)(51 138)(52 139)(53 140)(54 141)(55 142)(56 143)(57 144)(58 121)(59 122)(60 123)(61 124)(62 125)(63 126)(64 127)(65 128)(66 129)(67 130)(68 131)(69 132)(70 133)(71 134)(72 135)(73 192)(74 169)(75 170)(76 171)(77 172)(78 173)(79 174)(80 175)(81 176)(82 177)(83 178)(84 179)(85 180)(86 181)(87 182)(88 183)(89 184)(90 185)(91 186)(92 187)(93 188)(94 189)(95 190)(96 191)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192)

G:=sub<Sym(192)| (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)(49,181)(50,182)(51,183)(52,184)(53,185)(54,186)(55,187)(56,188)(57,189)(58,190)(59,191)(60,192)(61,169)(62,170)(63,171)(64,172)(65,173)(66,174)(67,175)(68,176)(69,177)(70,178)(71,179)(72,180)(73,123)(74,124)(75,125)(76,126)(77,127)(78,128)(79,129)(80,130)(81,131)(82,132)(83,133)(84,134)(85,135)(86,136)(87,137)(88,138)(89,139)(90,140)(91,141)(92,142)(93,143)(94,144)(95,121)(96,122)(97,164)(98,165)(99,166)(100,167)(101,168)(102,145)(103,146)(104,147)(105,148)(106,149)(107,150)(108,151)(109,152)(110,153)(111,154)(112,155)(113,156)(114,157)(115,158)(116,159)(117,160)(118,161)(119,162)(120,163), (1,141)(2,142)(3,143)(4,144)(5,121)(6,122)(7,123)(8,124)(9,125)(10,126)(11,127)(12,128)(13,129)(14,130)(15,131)(16,132)(17,133)(18,134)(19,135)(20,136)(21,137)(22,138)(23,139)(24,140)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,82)(47,83)(48,84)(49,168)(50,145)(51,146)(52,147)(53,148)(54,149)(55,150)(56,151)(57,152)(58,153)(59,154)(60,155)(61,156)(62,157)(63,158)(64,159)(65,160)(66,161)(67,162)(68,163)(69,164)(70,165)(71,166)(72,167)(97,177)(98,178)(99,179)(100,180)(101,181)(102,182)(103,183)(104,184)(105,185)(106,186)(107,187)(108,188)(109,189)(110,190)(111,191)(112,192)(113,169)(114,170)(115,171)(116,172)(117,173)(118,174)(119,175)(120,176), (1,149)(2,150)(3,151)(4,152)(5,153)(6,154)(7,155)(8,156)(9,157)(10,158)(11,159)(12,160)(13,161)(14,162)(15,163)(16,164)(17,165)(18,166)(19,167)(20,168)(21,145)(22,146)(23,147)(24,148)(25,100)(26,101)(27,102)(28,103)(29,104)(30,105)(31,106)(32,107)(33,108)(34,109)(35,110)(36,111)(37,112)(38,113)(39,114)(40,115)(41,116)(42,117)(43,118)(44,119)(45,120)(46,97)(47,98)(48,99)(49,136)(50,137)(51,138)(52,139)(53,140)(54,141)(55,142)(56,143)(57,144)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135)(73,192)(74,169)(75,170)(76,171)(77,172)(78,173)(79,174)(80,175)(81,176)(82,177)(83,178)(84,179)(85,180)(86,181)(87,182)(88,183)(89,184)(90,185)(91,186)(92,187)(93,188)(94,189)(95,190)(96,191), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192)>;

G:=Group( (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)(49,181)(50,182)(51,183)(52,184)(53,185)(54,186)(55,187)(56,188)(57,189)(58,190)(59,191)(60,192)(61,169)(62,170)(63,171)(64,172)(65,173)(66,174)(67,175)(68,176)(69,177)(70,178)(71,179)(72,180)(73,123)(74,124)(75,125)(76,126)(77,127)(78,128)(79,129)(80,130)(81,131)(82,132)(83,133)(84,134)(85,135)(86,136)(87,137)(88,138)(89,139)(90,140)(91,141)(92,142)(93,143)(94,144)(95,121)(96,122)(97,164)(98,165)(99,166)(100,167)(101,168)(102,145)(103,146)(104,147)(105,148)(106,149)(107,150)(108,151)(109,152)(110,153)(111,154)(112,155)(113,156)(114,157)(115,158)(116,159)(117,160)(118,161)(119,162)(120,163), (1,141)(2,142)(3,143)(4,144)(5,121)(6,122)(7,123)(8,124)(9,125)(10,126)(11,127)(12,128)(13,129)(14,130)(15,131)(16,132)(17,133)(18,134)(19,135)(20,136)(21,137)(22,138)(23,139)(24,140)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,82)(47,83)(48,84)(49,168)(50,145)(51,146)(52,147)(53,148)(54,149)(55,150)(56,151)(57,152)(58,153)(59,154)(60,155)(61,156)(62,157)(63,158)(64,159)(65,160)(66,161)(67,162)(68,163)(69,164)(70,165)(71,166)(72,167)(97,177)(98,178)(99,179)(100,180)(101,181)(102,182)(103,183)(104,184)(105,185)(106,186)(107,187)(108,188)(109,189)(110,190)(111,191)(112,192)(113,169)(114,170)(115,171)(116,172)(117,173)(118,174)(119,175)(120,176), (1,149)(2,150)(3,151)(4,152)(5,153)(6,154)(7,155)(8,156)(9,157)(10,158)(11,159)(12,160)(13,161)(14,162)(15,163)(16,164)(17,165)(18,166)(19,167)(20,168)(21,145)(22,146)(23,147)(24,148)(25,100)(26,101)(27,102)(28,103)(29,104)(30,105)(31,106)(32,107)(33,108)(34,109)(35,110)(36,111)(37,112)(38,113)(39,114)(40,115)(41,116)(42,117)(43,118)(44,119)(45,120)(46,97)(47,98)(48,99)(49,136)(50,137)(51,138)(52,139)(53,140)(54,141)(55,142)(56,143)(57,144)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135)(73,192)(74,169)(75,170)(76,171)(77,172)(78,173)(79,174)(80,175)(81,176)(82,177)(83,178)(84,179)(85,180)(86,181)(87,182)(88,183)(89,184)(90,185)(91,186)(92,187)(93,188)(94,189)(95,190)(96,191), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192) );

G=PermutationGroup([(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,25),(20,26),(21,27),(22,28),(23,29),(24,30),(49,181),(50,182),(51,183),(52,184),(53,185),(54,186),(55,187),(56,188),(57,189),(58,190),(59,191),(60,192),(61,169),(62,170),(63,171),(64,172),(65,173),(66,174),(67,175),(68,176),(69,177),(70,178),(71,179),(72,180),(73,123),(74,124),(75,125),(76,126),(77,127),(78,128),(79,129),(80,130),(81,131),(82,132),(83,133),(84,134),(85,135),(86,136),(87,137),(88,138),(89,139),(90,140),(91,141),(92,142),(93,143),(94,144),(95,121),(96,122),(97,164),(98,165),(99,166),(100,167),(101,168),(102,145),(103,146),(104,147),(105,148),(106,149),(107,150),(108,151),(109,152),(110,153),(111,154),(112,155),(113,156),(114,157),(115,158),(116,159),(117,160),(118,161),(119,162),(120,163)], [(1,141),(2,142),(3,143),(4,144),(5,121),(6,122),(7,123),(8,124),(9,125),(10,126),(11,127),(12,128),(13,129),(14,130),(15,131),(16,132),(17,133),(18,134),(19,135),(20,136),(21,137),(22,138),(23,139),(24,140),(25,85),(26,86),(27,87),(28,88),(29,89),(30,90),(31,91),(32,92),(33,93),(34,94),(35,95),(36,96),(37,73),(38,74),(39,75),(40,76),(41,77),(42,78),(43,79),(44,80),(45,81),(46,82),(47,83),(48,84),(49,168),(50,145),(51,146),(52,147),(53,148),(54,149),(55,150),(56,151),(57,152),(58,153),(59,154),(60,155),(61,156),(62,157),(63,158),(64,159),(65,160),(66,161),(67,162),(68,163),(69,164),(70,165),(71,166),(72,167),(97,177),(98,178),(99,179),(100,180),(101,181),(102,182),(103,183),(104,184),(105,185),(106,186),(107,187),(108,188),(109,189),(110,190),(111,191),(112,192),(113,169),(114,170),(115,171),(116,172),(117,173),(118,174),(119,175),(120,176)], [(1,149),(2,150),(3,151),(4,152),(5,153),(6,154),(7,155),(8,156),(9,157),(10,158),(11,159),(12,160),(13,161),(14,162),(15,163),(16,164),(17,165),(18,166),(19,167),(20,168),(21,145),(22,146),(23,147),(24,148),(25,100),(26,101),(27,102),(28,103),(29,104),(30,105),(31,106),(32,107),(33,108),(34,109),(35,110),(36,111),(37,112),(38,113),(39,114),(40,115),(41,116),(42,117),(43,118),(44,119),(45,120),(46,97),(47,98),(48,99),(49,136),(50,137),(51,138),(52,139),(53,140),(54,141),(55,142),(56,143),(57,144),(58,121),(59,122),(60,123),(61,124),(62,125),(63,126),(64,127),(65,128),(66,129),(67,130),(68,131),(69,132),(70,133),(71,134),(72,135),(73,192),(74,169),(75,170),(76,171),(77,172),(78,173),(79,174),(80,175),(81,176),(82,177),(83,178),(84,179),(85,180),(86,181),(87,182),(88,183),(89,184),(90,185),(91,186),(92,187),(93,188),(94,189),(95,190),(96,191)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192)])

Matrix representation G ⊆ GL4(𝔽73) generated by

1000
0100
0010
00072
,
1000
07200
00720
00072
,
72000
0100
00720
0001
,
52000
05200
00210
00063
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,72],[1,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[72,0,0,0,0,1,0,0,0,0,72,0,0,0,0,1],[52,0,0,0,0,52,0,0,0,0,21,0,0,0,0,63] >;

192 conjugacy classes

class 1 2A···2O3A3B4A···4P6A···6AD8A···8AF12A···12AF24A···24BL
order12···2334···46···68···812···1224···24
size11···1111···11···11···11···11···1

192 irreducible representations

dim111111111111
type+++
imageC1C2C2C3C4C4C6C6C8C12C12C24
kernelC23×C24C22×C24C23×C12C23×C8C22×C12C23×C6C22×C8C23×C4C22×C6C22×C4C24C23
# reps114121422823228464

In GAP, Magma, Sage, TeX

C_2^3\times C_{24}
% in TeX

G:=Group("C2^3xC24");
// GroupNames label

G:=SmallGroup(192,1454);
// by ID

G=gap.SmallGroup(192,1454);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,336,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^2=d^24=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,c*d=d*c>;
// generators/relations

׿
×
𝔽